Mowat C, Cole A, Windsor A, Ahmad T, Arnott I, Driscoll R, et al. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2011; 60: 571-607. https://doi.org/10.1136/gut.2010.224154
Chatu S, Subramanian V, Saxena S, Pollok RC. The role of thiopurines in reducing the need for surgical resection in Crohn’s disease: a systematic review and meta-analysis. Jam J Gastroenterol. 2012; 107:23–34. https://doi.org/10.1038/ajg.2011.401
Peyrin-Biroulet L, Khosrotehrani K, Carrat F, Bouvier AM, Chevaux JB, Simon T, et al. Azathioprine and 6-mercaptopurine for the prevention of postoperative recurrence in Crohn’s disease: a meta-analysis. Jam J Gastroenterol. 2009; 104: 2089–96. https://doi.org/10.1038/ajg.2009.301
Colombel JF, Sandborn WJ, Reinisch W, Mantzaris GJ, Kornbluth A, Rachmilewitz D, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010; 362: 1383–95. https://doi.org/10.1056/NEJMoa0904492
Chaparro M, Panés J, García V, Mendoza JL, Bermejo F, López San Román A, et al. Safety of thiopurine therapy in inflammatory bowel disease: Long-term study of 3931 patients. Intestinal inflammation Dis. 2013; 19:1404–10. https://doi.org/10.1097/MIB.0b013e318281f28f
Schwab M, Schäffeler E, Marx C, Fischer C, Lang T, Behrens C, et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: influence of thiopurine S-methyltransferase polymorphism. Pharmacogenetics. 2002; 12:429-36. https://doi.org/10.1097/00008571-200208000-00003
Chande N, Laidlaw M, McDonald JW, Macdonald JK. Azathioprine or 6-mercaptopurine for inducing remission in Crohn’s disease. Cochrane Database Syst Rev. 2013; 10:CD000545 https://doi.org/10.1002/14651858.CD000545.pub5
Friedman AB, Sparrow MP, Gibson PR. Role of thiopurine metabolites in inflammatory bowel disease and rheumatologic disorders. Int J Rheum Dis. 2014; 17:132–41. https://doi.org/10.1111/1756-185X.12204
Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, et al. Intolerance and heterozygosity of mercaptopurine therapy at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst. 1999; 91: 2001–8.
Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X. Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2012; 35:15–36. https://doi.org/10.1111/j.1365-2036.2011.04905.x
Higgs JE, Payne K, Roberts C, Newman WG. Are patients with intermediate TPMT activity at increased risk of myelosuppression when receiving thiopurine medications? Pharmacogenomics. 2010; 11:177–88. https://doi.org/10.2217/pgs.09.155
Gearry RB, Barclay ML, Burt MJ, Collett JA, Chapman BA, Roberts RL, et al. Thiopurine S-methyltransferase (TPMT) genotype does not predict adverse reactions to thiopurine drugs in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2003; 18:395-400. https://doi.org/10.1046/j.1365-2036.2003.01690.x
Colombel JF, Ferrari N, Debuysère H, Marteau P, Gendre JP, Bonaz B, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology. 2000; 118: 1025-30. https://doi.org/10.1016/S0016-5085(00)70354-4
Ansari A, Arenas M, Greenfield SM, Morris D, Lindsay J, Gilshenan K, et al. Thiopurine methyltransferase activity and the use of azathioprine in inflammatory bowel disease. Aliment Pharmacol Ther. 2002; 16: 1743-50. https://doi.org/10.1046/j.1365-2036.2002.01353.x
Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre EM, Rees DC, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Lost Genes. 2002; 111: 360-7. https://doi.org/10.1007/s00439-002-0798-z
Marinaki AM, Duley JA, Arenas M, Sumi S, Lewis CM, Shobowale-Bakre M, et al. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics. 2004; 14:181–7. https://doi.org/10.1097/00008571-200403000-00006
Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016; 48: 367–73. https://doi.org/10.1038/ng.3508
Yang JJ, Whirl-Carrillo M, Scott SA, Turner AJ, Schwab M, Tanaka Y, et al. Gene insertion of the pharmacogenic variation consortium: NUDT15. Clin Pharmacol Ther. 2019; 105: 1091–4. https://doi.org/10.1002/cpt.1411
Maaser C, Sturm A, Vavricka SR, Kucharzik T, Fiorino G, Annese V, et al. ECCO-ESGAR guidelines for diagnostic evaluation in IBD Part 1: initial diagnosis, monitoring of known IBD, detection of complications. J Crohns Colitis. 2019; 13:144–64. https://doi.org/10.1093/ecco-jcc/jjy113
Silverberg MS, Satsangi J, Ahmad T, Arnott ID, Bernstein CN, Brant SR, et al. Towards an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working group of the World Congress of Gastroenterology in Montreal 2005. Can J Gastroenterol. 2005; 19:5–36.
Harvey RF, Bradshaw JM. A simple index of Crohn’s disease activity. Lancet. 1980; 1:514.
Campbell S, Kingstone K, Ghosh S. Significance of thiopurine methyltransferase activity in patients with inflammatory bowel disease maintained on low-dose azathioprine. Aliment Pharmacol Ther. 2002; 16:389–98. https://doi.org/10.1046/j.1365-2036.2002.01177.x
Zelinkova Z, Derijks LJ, Stokkers PC, Vogels EW, van Kampen AH, Curvers WL, et al. Association of inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes with azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol. 2006; 4:44–49. https://doi.org/10.1016/j.cgh.2005.10.019
Dewit O, Moreels T, Baert F, Peeters H, Reenaers C, de Vos M, et al. Limitations of extensive TPMT genotyping in the management of azathioprine-induced myelosuppression in patients with IBD. Clin Biochem. 2011; 44: 1062–6. https://doi.org/10.1016/j.clinbiochem.2011.06.079
Ansari A, Arenas M, Greenfield SM, Morris D, Lindsay J, Gilshenan K, et al. Prospective evaluation of the pharmacogenetics of azathioprine in the treatment of inflammatory bowel disease. Aliment Pharmacol Ther. 2008; 28:973–83. https://doi.org/10.1111/j.1365-2036.2008.03788.x
Hindorf U, Lindqvist M, Peterson C, Söderkvist P, Ström M, Hjortswang H, et al. Pharmacogenetics during standardized initiation of thiopurine treatment in inflammatory bowel disease. Gut. 2006; 55: 1423-31. https://doi.org/10.1136/gut.2005.074930
Van Dieren JM, van Vuuren AJ, Kusters JG, Nieuwenhuis EE, Kuipers EJ, van der Woude CJ. ITPA genotype is not predictive for the development of adverse effects in patients with inflammatory bowel disease treated with AZA. Gut. 2005; 54: 1664.
Gutiérrez-Valencia M, Leache L, Saiz LC, Beloqui JJ, Barajas M, Vicuña M, et al. The role of pharmacogenomics in thiopurine efficacy and safety in inflammatory bowel disease: a systematic review and meta-analysis. J Clin Gastroenterol. 2023; 57: 671-85.
Von Ahsen N, Armstrong VW, Behrens C, von Tirpitz C, Stallmach A, Herfarth H, et al. Association of inosine triphosphatase 94C>A deficiency and thiopurine S-methyltransferase deficiency with adverse events and dropouts under azathioprine therapy in a prospective study of Crohn’s disease. Clin Chem. 2005; 51: 2282-8. https://doi.org/10.1373/clinchem.2005.057158
Mañosa M, Calafat M, de Francisco R, et al. Phenotype and natural history of elderly-onset inflammatory bowel disease: a multicenter, case-control study. Aliment Pharmacol Ther. 2018; 47:605–14. https://doi.org/10.1111/apt.14494
#Predictive #role #ITPA #genetic #variants #thiopurinerelated #myelotoxicity #patients #Crohns #disease #Pharmacogenomics #Journal
Image Source : www.nature.com